Biblioteca Julio Castiñeiras. Sistema de Información Integrado - Facultad de Ingeniería UNLP
Facultad de Ingeniería | 115 esq.47 | Horario: Lunes a Viernes 8 a 19 hs.
E-mail: bibcentral@ing.unlp.edu.ar

Ingresó como Anónimo Ver Carrito
  Inicio     Búsqueda Avanzada  
  Etiquetado     Ficha Bibliográfica / Catalográfica     MARC  
Información bibliografica (registro INGC-EBK-000903)
The Science of Vehicle Dynamics   / Guiggiani, Massimo.;  -- Dordrecht :Springer Netherlands :;Imprint: Springer,2014.
xii, 356 p. :

Preface -- 1 Introduction -- 1.1 Vehicle Definition -- 1.2 Vehicle Basic Scheme -- References -- 2 Mechanics of the Wheel with Tire -- 2.1 The Tire as a Vehicle Component -- 2.2 Rim Position and Motion -- 2.3 Carcass Features -- 2.4 Contact Patch -- 2.5 Footprint Force -- 2.5.1 Perfectly Flat Road Surface -- 2.6 Tire Global Mechanical Behavior -- 2.6.1 Tire Transient Behavior -- 2.6.2 Tire Steady-State Behavior -- 2.6.3 Rolling Resistance -- 2.6.4 Speed Independence (Almost) -- 2.6.5 Pure Rolling (not Free Rolling) -- 2.7 Tire Slips -- 2.7.1 Rolling Velocity -- 2.7.2 Definition of Tire Slips -- 2.7.3 Slip Angle -- 2.8 Grip Forces and Tire Slips -- 2.9 Tire Testing -- 2.9.1 Pure Longitudinal Slip -- 2.9.2 Pure Lateral Slip -- 2.10 Magic Formula -- 2.11 Mechanics of Wheels with Tire -- 2.12 Summary -- 2.13 List of Some Relevant Concepts -- References -- 3 Vehicle Model for Handling and Performance -- 3.1 Mathematical Framework -- 3.2 Vehicle Congruence (Kinematic) Equations -- 3.2.1 Velocities -- 3.2.2 Yaw Angle and Trajectory -- 3.2.3 Velocity Center -- 3.2.4 Fundamental Ratios -- 3.2.5 Accelerations and Radii of Curvature -- 3.2.6 Acceleration Center -- 3.2.7 Tire Kinematics (Tire Slips) -- 3.3 Vehicle Constitutive (Tire) Equations -- 3.4 Vehicle Equilibrium Equations -- 3.5 Forces Acting on the Vehicle -- 3.5.1 Weight -- 3.5.2 Aerodynamic Force -- 3.5.3 Roadâ_"Tire Friction Forces -- 3.5.4 Roadâ_"Tire Vertical Forces -- 3.6 Vehicle Equilibrium Equations (more explicit form) -- 3.7 Load Transfers -- 3.7.1 Longitudinal Load Transfer -- 3.7.2 Lateral Load Transfers -- 3.7.3 Vertical Loads on each Tire -- 3.8 Suspension First-Order Analysis -- 3.8.1 Suspension Reference Configuration -- 3.8.2 Suspension Internal Coordinates -- 3.8.3 Camber variation -- 3.8.4 Vehicle Internal Coordinates -- 3.8.5 Roll and Vertical Stiffnesses -- 3.8.6 Suspension Internal Equilibrium -- 3.8.7 Effects of a Lateral Force -- 3.8.8 No-Roll Centers and No-Roll Axis -- 3.8.9 Forces at the No-Roll Centers -- 3.8.10 Suspension Jacking -- 3.8.11 Roll Angle and Lateral Load Transfers -- 3.8.12 Explicit Expressions of Lateral Load Transfers -- 3.8.13 Lateral Load Transfers with Rigid Tires -- 3.9 Dependent Suspensions -- 3.10 Sprung and Unsprung Masses -- 3.11 Vehicle Model for Handling and Performance -- 3.11.1 Equilibrium Equations -- 3.11.2 Constitutive (Tire) Equations -- 3.11.3 Congruence (Kinematic) Equations -- 3.11.4 Principles of any Differential Mechanism -- 3.12 The Structure of this Vehicle Model -- 3.13 Three-Axle vehicles -- 3.14 Summary -- 3.15 List of Some Relevant Concepts -- References -- 4 Braking Performance -- 4.1 Pure Braking -- 4.2 Vehicle Model for Braking Performance -- 4.3 Equilibrium Equations -- 4.4 Longitudinal Load Transfer -- 4.5 Maximum Deceleration -- 4.6 Brake Balance -- 4.7 All Possible Braking Combinations -- 4.8 Changing the Grip -- 4.9 Changing the Weight Distribution -- 4.10 A Numerical Example -- 4.11 Braking Performance of Formula Cars -- 4.11.1 Equilibrium Equations -- 4.11.2 Longitudinal Load Transfer -- 4.11.3 Maximum Deceleration -- 4.11.4 Braking Balance -- 4.11.5 Typical Formula 1 Braking Performance -- 4.12 Summary -- 4.13 List of Some Relevant Concepts -- 5 The Kinematics of Cornering -- 5.1 Planar Kinematics of a Rigid -- 5.1.1 Velocity Field and Velocity Center -- 5.1.2 Acceleration Field, Inflection Circle and Acceleration Center -- 5.2 The Kinematics of a Turning Vehicle -- 5.2.1 Fixed and Moving Centrodes of a Turning Vehicle -- 5.2.2 Inflection Circle -- 5.2.3 Variable Curvatures -- References -- 6 Handling of Road Cars -- 6.1 Open Differential -- 6.2 Fundamental Equations of Vehicle Handling -- 6.3 Double Track Model -- 6.4 Single Track Model -- 6.4.1 Governing Equations of the Single Track Model -- 6.4.2 Axle Characteristics -- 6.5 Alternative State Variables -- 6.6 Inverse Congruence Equations -- 6.7 Vehicle in Steady-State Conditions -- 6.7.1 The Role of the Steady-State Lateral Acceleration -- 6.7.2 Steady-State Analysis -- 6.8 Handling Diagramâ_"the Classical Approach -- 6.9 Weak Concepts in Classical Vehicle Dynamics -- 6.9.1 Popular Definitions of Understeer/Oversteer -- 6.10 Map of Achievable Performance (MAP)â_"a New Global Approach -- 6.11 Vehicle in Transient Conditions (Stability and Control Derivatives) -- 6.11.1 Steady-State Conditions (Equilibrium Points) -- 6.11.2 Linearization of the Equations of Motion -- 6.11.3 Stability -- 6.11.4 Forced Oscillations (Driver Action) -- 6.12 Relationship Between Steady State Data and Transient Behavior -- 6.13 New Understeer Gradient -- 6.14 Stability (Again) -- 6.15 The Single Track Model Revisited -- 6.15.1 Different Vehicles with Almost Identical Handling -- 6.16 Road Vehicles with Locked or Limited Slip Differential -- 6.17 Linear Single Track Model -- 6.17.1 Governing Equations -- 6.17.2 Solution for Constant Forward Speed -- 6.17.3 Critical Speed -- 6.17.4 Transient Vehicle Behavior -- 6.17.5 Steady-State Behavior: Steering Pad -- 6.17.6 Lateral Wind Gust -- 6.17.7 Banked Road -- 6.18 Summary -- 6.19 List of Some Relevant Concepts -- References -- 7 Handling of Race Cars -- 7.1 Locked and Limited Slip Differentials -- 7.2 Fundamental Equations of Race Car Handling -- 7.3 Double Track Race Car Model -- 7.4 Tools for Handling Analysis -- 7.5 The Handling Diagram Becomes the Handling Surface -- 7.5.1 Handling with Locked Differential (No Wings) -- 7.6 Handling of Formula Cars -- 7.6.1 Handling Surface -- 7.6.2 Map of Achievable Performance (MAP) -- 7.7 Summary -- 7.8 List of Some Relevant Concepts -- References -- 8 Ride Comfort and Road Holding -- 8.1 Vehicle Models for Ride and Road Holding -- 8.2 Quarter Car Model -- 8.2.1 The Inerter as a Spring Softener 8.2.2 Quarter Car Natural Frequencies and Modes -- 8.3 Shock Absorber Tuning -- 8.3.1 Comfort Optimization -- 8.3.2 Road Holding Optimization -- 8.3.3 The Inerter as a Tool for Road Holding Tuning -- 8.4 Road Profiles -- 8.5 Free Vibrations of Road Cars -- 8.5.1 Governing Equations -- 8.5.2 Proportional Viscous Damping -- 8.5.3 Vehicle with Proportional Viscous Damping -- 8.6 Tuning of Suspension Stiffnesses -- 8.6.1 Optimality of Proportional Damping -- 8.6.2 A Numerical Example -- 8.7 Non-Proportional Damping -- 8.8 Interconnected Suspensions -- 8.9 Summary -- 8.10 List of Some Relevant Concepts -- References -- 9 Handling with Roll Motion -- 9.1 Vehicle Position and Orientation -- 9.2 Yaw, Pitch and Roll -- 9.3 Angular Velocity -- 9.4 Angular Acceleration -- 9.5 Vehicle Lateral Velocity -- 9.5.1 Track Invariant Points -- 9.5.2 Vehicle Invariant Point (VIP) -- 9.5.3 Lateral Velocity and Acceleration -- 9.6 Three-Dimensional Vehicle Dynamics -- 9.6.1 Velocity and Acceleration of G -- 9.6.2 Rate of Change of the Angular Momentum -- 9.6.3 Completing the Torque Equation -- 9.6.4 Equilibrium Equations -- 9.6.5 Including the Unsprung Mass -- 9.7 Handling with Roll Motion -- 9.7.1 Equilibrium Equations -- 9.7.2 Load Transfers -- 9.7.3 Constitutive (Tire) Equations -- 9.7.4 Congruence (Kinematic) Equations -- 9.8 Steady-State and Transient Analysis -- 9.9 Summary -- 9.10 List of Some Relevant Concepts -- References -- 10 Tire Models -- 10.1 Brush Model Definition -- 10.1.1 Roadway and Rim -- 10.1.2 Shape of the Contact Patch -- 10.1.3 Forceâ_"Couple Resultant -- 10.1.4 Position of the Contact Patch -- 0.1.5 Pressure Distribution -- 10.1.6 Friction -- 10.1.7 Constitutive Relationship -- 10.1.8 Kinematics -- 10.2 General Governing Equations of the Brush Model -- 10.2.1 Data for Numerical Examples -- 10.3 Brush Model Steady-State Behavior -- 10.3.1 Governing Equations -- 10.3.2 Adhesion and Sliding Zones -- 10.3.3 Forceâ_"Couple Resultant -- 10.4 Adhesion Everywhere (Linear Behavior) -- 10.5 Wheel with Pure Translational Slip -- 10.5.1 Rectangular Contact Patch -- 10.5.2 Elliptical Contact Patch -- 10.6 Wheel with Pure Spin Slip -- 10.7 Wheel with Both Translational and Spin Slips -- 10.7.1 Rectangular Contact Patch -- 10.7.2 Elliptical Contact Patch -- 10.8 Brush Model Transient Behavior -- 10.8.1 Transient Model with Carcass Compliance Only -- 10.8.2 Transient Model with Carcass and Tread Compliance -- 10.8.3 Numerical Examples -- 10.9 Summary -- 10.10List of Some Relevant Concepts -- References -- References -- Index.
ISBN 9789401785334

El software empleado por esta biblioteca esta basado en el Koha Software OSS para gestion de Bibliotecas, y cumple estandars internacionales de informacion web

Número de visitantes: